Download plot Excel input example



----
Cite us:

Savoi, S., Santiago, A., Orduña, L., & Matus, J. T. (2022). Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits . Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2022.937927.



Tocai and Merlot cultivars data extracted from:

Savoi, S., Wong, D. C. J., Arapitsas, P., Miculan, M., Bucchetti, B., Peterlunger, E., Fait, A., Mattivi, F., & Castellarin, S. D. (2016). Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biology, 16(1), 67. https://doi.org/10.1186/s12870-016-0760-1.

Savoi, S., Wong, D. C. J., Degu, A., Herrera, J. C., Bucchetti, B., Peterlunger, E., Fait, A., Mattivi, F., & Castellarin, S. D. (2017). Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit. Frontiers in Plant Science, 8, 1124. https://doi.org/10.3389/fpls.2017.01124.



Pinot noir and Cabernet sauvignon cultivars data extracted from:

Fasoli, M., Richter, C. L., Zenoni, S., Bertini, E., Vitulo, N., Dal Santo, S., Dokoozlian, N., Pezzotti, M., & Tornielli, G. B. (2018). Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine. Plant Physiology, 178(3), 1187-1206. https://doi.org/10.1104/pp.18.00559.
Loading...




WGCNA modules table

----
Cite us:

Savoi, S., Santiago, A., Orduña, L., & Matus, J. T. (2022). Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits . Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2022.937927.



Data from:

Savoi, S., Wong, D. C. J., Arapitsas, P., Miculan, M., Bucchetti, B., Peterlunger, E., Fait, A., Mattivi, F., & Castellarin, S. D. (2016). Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biology, 16(1), 67. https://doi.org/10.1186/s12870-016-0760-1.

Savoi, S., Wong, D. C. J., Degu, A., Herrera, J. C., Bucchetti, B., Peterlunger, E., Fait, A., Mattivi, F., & Castellarin, S. D. (2017). Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit. Frontiers in Plant Science, 8, 1124. https://doi.org/10.3389/fpls.2017.01124.




WGCNA modules table

----
Cite us:

Savoi, S., Santiago, A., Orduña, L., & Matus, J. T. (2022). Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits . Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2022.937927.



Data from:

Fasoli, M., Richter, C. L., Zenoni, S., Bertini, E., Vitulo, N., Dal Santo, S., Dokoozlian, N., Pezzotti, M., & Tornielli, G. B. (2018). Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine. Plant Physiology, 178(3), 1187-1206. https://doi.org/10.1104/pp.18.00559.